Lipidic Formulations Inspired by COVID Vaccines as Smart Coatings to Enhance Nanoparticle-Based Cancer Therapy

Author:

Conte Marzia1ORCID,Carofiglio Marco1ORCID,Rosso Giada1,Cauda Valentina1ORCID

Affiliation:

1. Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

Recent advances in nanomedicine have led to the introduction and subsequent establishment of nanoparticles in cancer treatment and diagnosis. Nonetheless, their application is still hindered by a series of challenges related to their biocompatibility and biodistribution. In this paper, we take inspiration from the recently produced and widely spread COVID vaccines, based on the combinational use of ionizable solid lipid nanoparticles, cholesterol, PEGylated lipids, and neutral lipids able to incorporate mRNA fragments. Here, we focus on the implementation of a lipidic formulation meant to be used as a smart coating of solid-state nanoparticles. The composition of this formulation is finely tuned to ensure efficient and stable shielding of the cargo. The resulting shell is a highly customized tool that enables the possibility of further functionalizations with targeting agents, peptides, antibodies, and fluorescent moieties for future in vitro and in vivo tests and validations. Finally, as a proof of concept, zinc oxide nanoparticles doped with iron and successively coated with this lipidic formulation are tested in a pancreatic cancer cell line, BxPC-3. The results show an astonishing increase in cell viability with respect to the same uncoated nanoparticles. The preliminary results presented here pave the way towards many different therapeutic approaches based on the massive presence of highly biostable and well-tolerated nanoparticles in tumor tissues, such as sonodynamic therapy, photodynamic therapy, hyperthermia, and diagnosis by means of magnetic resonance imaging.

Funder

European Union’s Horizon 2020

Ministero dell’Università e della Ricerca

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3