Yttrium Doping Effects on Ferroelectricity and Electric Properties of As-Deposited Hf1−xZrxO2 Thin Films via Atomic Layer Deposition

Author:

Oh Youkyoung1,Lee Seung Won1,Choi Jeong-Hun1,Ahn Seung-Eon2,Kim Hyo-Bae1,Ahn Ji-Hoon1ORCID

Affiliation:

1. Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea

2. Department of Nano & Semiconductor Engineering, Tech University of Korea, Siheung 15073, Republic of Korea

Abstract

Hf1−xZrxO2 (HZO) thin films are versatile materials suitable for advanced ferroelectric semiconductor devices. Previous studies have shown that the ferroelectricity of HZO thin films can be stabilized by doping them with group III elements at low concentrations. While doping with Y improves the ferroelectric properties, there has been limited research on Y-HZO thin films fabricated using atomic layer deposition (ALD). In this study, we investigated the effects of Y-doping cycles on the ferroelectric and electrical properties of as-deposited Y-HZO thin films with varying compositions fabricated through ALD. The Y-HZO thin films were stably crystallized without the need for post-thermal treatment and exhibited transition behavior depending on the Y-doping cycle and initial composition ratio of the HZO thin films. These Y-HZO thin films offer several advantages, including enhanced dielectric constant, leakage current density, and improved endurance. Moreover, the optimized Y-doping cycle induced a phase transformation that resulted in Y-HZO thin films with improved ferroelectric properties, exhibiting stable behavior without fatigue for up to 1010 cycles. These as-deposited Y-HZO thin films show promise for applications in semiconductor devices that require high ferroelectric properties, excellent electrical properties, and reliable performance with a low thermal budget.

Funder

Ministry of Trade, Industry and Energy

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3