The Study on the Lasing Modes Modulated by the Dislocation Distribution in the GaN-Based Microrod Cavities

Author:

Li Yuyin1,Chen Peng1ORCID,Zhang Xianfei1,Yan Ziwen1,Xu Tong1,Xie Zili1,Xiu Xiangqian1ORCID,Chen Dunjun1,Zhao Hong1,Shi Yi1,Zhang Rong1ORCID,Zheng Youdou1

Affiliation:

1. Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China

Abstract

Low-threshold lasing under pulsed optical pumping is demonstrated in GaN-based microrod cavities at room temperature, which are fabricated on the patterned sapphire substrates (PSS). Because the distribution of threading dislocations (TDs) is different at different locations, a confocal micro-photoluminescence spectroscopy (μ-PL) was performed to analyze the lasing properties of the different diameter microrods at the top of the triangle islands and between the triangle islands of the PSS substrates, respectively. The μ-PL results show that the 2 μm-diameter microrod cavity has a minimum threshold of about 0.3 kW/cm2. Whispering gallery modes (WGMs) in the microrod cavities are investigated by finite-difference time-domain simulation. Combined with the dislocation distribution in the GaN on the PSS substrates, it is found that the distribution of the strongest lasing WGMs always moves to the region with fewer TDs. This work reveals the connection between the lasing modes and the dislocation distribution, and can contribute to the development of low-threshold and high-efficiency GaN-based micro-lasers.

Funder

National Nature Science Foundation of China

Collaborative Innovation Center of Solid-State Lighting and Energy-saving Electronics, and the Open Fund of the State Key Laboratory on Integrated Optoelectronics

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3