Degradation of Oxytetracycline in Saturated Porous Media by In Situ Chemical Oxidation Using Oxygen-Doped Graphitic Carbon Nitride and Peroxymonosulfate: Laboratory-Scale Column Experiments

Author:

Nguyen Thanh-Tuan1ORCID,Kim Do-Gun2ORCID,Ko Seok-Oh1ORCID

Affiliation:

1. Department of Civil Engineering, Kyung Hee University, 1732, Deakyungdaero, Yongin 17104, Republic of Korea

2. Department of Environmental Engineering, Sunchon National University, 255 Jungang-ro, Suncheon 57922, Republic of Korea

Abstract

Oxytetracycline (OTC) is frequently detected in groundwater and soil, posing substantial risks to the subsurface environment via persistence, phytotoxicity, changing bacterial communities, and antibiotic resistance. In situ chemical oxidation (ISCO) is one of the best alternatives for removing OTC from groundwater. However, its feasibility has rarely been investigated using columns for which optimal conditions can be obtained for practical applications. Thus, a system consisting of oxygen-doped graphitic carbon nitride (OgCN) and peroxymonosulfate (PMS) (OgCN/PMS) was tested for OTC removal using continuous-flow experiments with columns packed with sand and glass beads (GBs). The sand column exhibited better adsorption and degradation of OTC than the GB column in pulse injection experiments, regardless of whether OgCN was packed. Additional experiments were performed using a column saturated with the OTC solution and another filled with deionized water to simulate ISCO, using GB as the medium, to evaluate the net OTC removal by catalytic oxidation, excluding adsorption. Performance improved with increased OgCN packing, PMS dosage, retention time, and pH. Anions slightly affected the performance due to scavenging and propagation of radicals. These findings indicate the high potential of OgCN/PMS for ISCO and the usefulness of column experiments in field applications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3