Abstract
In physics, communication theory, engineering, statistics, and other areas, one of the methods of deriving distributions is the optimization of an appropriate measure of entropy under relevant constraints. In this paper, it is shown that by optimizing a measure of entropy introduced by the second author, one can derive densities of univariate, multivariate, and matrix-variate distributions in the real, as well as complex, domain. Several such scalar, multivariate, and matrix-variate distributions are derived. These include multivariate and matrix-variate Maxwell–Boltzmann and Rayleigh densities in the real and complex domains, multivariate Student-t, Cauchy, matrix-variate type-1 beta, type-2 beta, and gamma densities and their generalizations.
Subject
General Physics and Astronomy
Reference16 articles.
1. A Mathematical Theory of Communication
2. Quantification method of classification processes: Concept of structural α-entropy;Havrda;Kybernetika,1967
3. Basic Concepts in Information Theory and Statistics: Axiomatic Foundations and Applications;Mathai,1975
4. Possible generalization of Boltzmann-Gibbs statistics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献