Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice

Author:

Yang Haoxuan,Qazi Izhar HyderORCID,Pan Bo,Angel ChristianaORCID,Guo Shichao,Yang Jingyu,Zhang Yan,Ming Zhang,Zeng ChangjunORCID,Meng QingyongORCID,Han Hongbing,Zhou GuangbinORCID

Abstract

Female reproductive (ovarian) aging is distinctively characterized by a markedly reduced reproductive function due to a remarkable decline in quality and quantity of follicles and oocytes. Selenium (Se) has been implicated in playing many important biological roles in male fertility and reproduction; however, its potential roles in female reproduction, particularly in aging subjects, remain poorly elucidated. Therefore, in the current study we used a murine model of female reproductive aging and elucidated how different Se-levels might affect the reproductive efficiency in aging females. Our results showed that at the end of an 8-week dietary trial, whole-blood Se concentration and blood total antioxidant capacity (TAOC) were significantly reduced in Se-deficient (0.08 mg Se/kg; Se-D) mice, whereas both of these biomarkers were significantly higher in inorganic (0.33 mg/kg; ISe-S) and organic (0.33 mg/kg; OSe-S) Se-supplemented groups. Similarly, compared to the Se-D group, Se supplementation significantly ameliorated the maintenance of follicles and reduced the rate of apoptosis in ovaries. Meanwhile, the rate of in vitro-produced embryos resulting from germinal vesicle (GV) oocytes was also significantly improved in Se-supplemented (ISe-S and OSe-S) groups compared to the Se-D mice, in which none of the embryos developed to the hatched blastocyst stage. RT-qPCR results revealed that mRNA expression of Gpx1, Gpx3, Gpx4, Selenof, p21, and Bcl-2 genes in ovaries of aging mice was differentially modulated by dietary Se levels. A considerably higher mRNA expression of Gpx1, Gpx3, Gpx4, and Selenof was observed in Se-supplemented groups compared to the Se-D group. Similarly, mRNA expression of Bcl-2 and p21 was significantly lower in Se-supplemented groups. Immunohistochemical assay also revealed a significantly higher expression of GPX4 in Se-supplemented mice. Our results reasonably indicate that Se deficiency (or marginal levels) can negatively impact the fertility and reproduction in females, particularly those of an advancing age, and that the Se supplementation (inorganic and organic) can substantiate ovarian function and overall reproductive efficiency in aging females.

Funder

National Natural Science Foundation of China

China Agriculture Research System

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3