Tri-Camera High-Speed Videogrammetry for Three-Dimensional Measurement of Laminated Rubber Bearings Based on the Large-Scale Shaking Table

Author:

Tong Xiaohua,Luan Kuifeng,Liu Xianglei,Liu ShijieORCID,Chen Peng,Jin Yanmin,Lu Wensheng,Huang Baofeng

Abstract

Laminated rubber bearings are widely used for the mitigation of seismic damage of large-scale structures and equipment. However, owing to the flexibility in horizontal direction, the traditional contacted transducer is difficult to acquire the displacement data accurately in the three directions, respectively. In this paper, three-dimensional displacement measurement of laminated rubber bearing based on the large-scale shaking table is achieved by the use of a tri-camera high-speed videogrammetric system consisting of three complementary-metal-oxide-semiconductor (CMOS) cameras, one synchronous controller, and one pair of 1000 watt light sources, which are used to simultaneously acquire the tri-camera image sequences of laminated rubber bearing at a speed of 300 frames per second (fps). Firstly, this paper proposes a fast image block technique for detecting and tracking targets in tri-camera image sequences by integration of techniques morphological edge detection, attribute based ellipse extraction and least-squares-based fitting adjustment. Secondly, this paper presents an integrated bundle adjustment approach, which brings continuous tracking points into one collinearity condition equation, to reconstruct the three dimensional coordinates of continuous tracking points, for the purpose of improving the accuracy of three-dimensional coordinates of tracking points based on tri-camera image sequences. At last, an empirical experiment was conducted to measure the three-dimensional displacement of laminated rubber bearings on the shaking table by the use of the proposed method. The experimental results showed that the proposed method could obtain three-dimensional displacement of laminated rubber bearings with an accuracy of more than 0.5 mm.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3