Investigation of EM Backscattering from Slick-Free and Slick-Covered Sea Surfaces Using the SSA-2 and SAR Images

Author:

Zheng Honglei,Zhang Yanmin,Khenchaf Ali,Wang Yunhua,Ghanmi Helmi,Zhao Chaofang

Abstract

This paper is devoted to investigating the electromagnetic (EM) backscattering from slick-free and slick-covered sea surfaces at various bands (L-band, C-band, X-band, and Ku-band) by using the second-order small slope approximation (SSA-2) and the measured synthetic aperture radar (SAR) data. It is known that the impact of slick on sea surface is mainly caused by two factors: the Marangoni damping effect and the reduction of friction velocity. In this work, the influences induced by these two factors on the sea curvature spectrum, the root mean square (RMS) height, the RMS slope, and the autocorrelation function of sea surfaces are studied in detail. Then, the slick-free and slick-covered sea surface profiles are simulated using the Elfouhaily spectrum and the Monte-Carlo model. The SSA-2 with the tapered incident wave is employed to simulate the normalized radar cross-sections (NRCSs) of sea surfaces. Furthermore, for slick-free sea surfaces, the NRCSs simulated with the SSA-2 at various bands are compared with those obtained by the first-order small slope approximation (SSA-1), the classic two-scale model (TSM), and the geophysical model functions (GMFs) at various bands, respectively. For slick-covered sea surfaces, the SSA-2-simulated NRCSs are compared with those obtained from C-band Radarsat-2 images and L-band uninhabited aerial vehicle synthetic aperture radar (UAVSAR) images, respectively. The numerical simulations illustrate that the SSA-2 can be used to study the EM backscattering from slick-free and slick-covered sea surfaces, and it has more advantages than the SSA-1 and the TSM. The works presented in this paper are helpful for understanding the EM scattering from the sea surface covered with slick, in theory.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3