A Methodological Framework to Retrospectively Obtain Downscaled Precipitation Estimates over the Tibetan Plateau

Author:

He Kang,Ma Ziqiang,Zhao Ruiying,Biswas Asim,Teng Hongfen,Xu Junfeng,Yu Wu,Shi ZhouORCID

Abstract

Long-term precipitation estimates with both finer spatial resolution and better quality are vital and highly needed in various related fields. Numerous downscaling algorithms have been investigated based on the Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA), to obtain precipitation data with finer resolution (~1 km). However, this research was restricted by the time span of the TMPA dataset, as the starting time of TMPA was 1998. In this study, a new methodological framework incorporating wavelet coherence and Cubist was proposed to retrospectively obtain downscaled precipitation estimates (DS) over the Tibetan Plateau (TP), based on TMPA and ground observations, in 1990s. The correlations and similarities of precipitation patterns between the target years, from 1990 to 1999, and reference years, from 2000 to 2013, were firstly determined using wavelet coherence based on ground observations. Following this, the TMPA data in the reference years were regarded as the reference in the corresponding target years, which were adopted to be downscaled using Cubist models and land surface variables, to obtain the DS in the target years. We found that the DS showed continuous trends, which corresponded well with the ground observations. Additionally, the performances of the DS were better than those of the Climate Hazards group Infrared Precipitation with Stations (CHIRPS) data over the TP. Therefore, this methodological framework has great potential for obtaining precipitation estimates for the period of the 1990s for which TMPA data is inaccessible.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3