A Ground Elevation and Vegetation Height Retrieval Algorithm Using Micro-Pulse Photon-Counting Lidar Data

Author:

Zhu Xiaoxiao,Nie Sheng,Wang Cheng,Xi XiaohuanORCID,Hu Zhenyue

Abstract

The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission employs a micro-pulse photon-counting LiDAR system for mapping and monitoring the biomass and carbon of terrestrial ecosystems over large areas. In preparation for ICESat-2 data processing and applications, this paper aimed to develop and validate an effective algorithm for better estimating ground elevation and vegetation height from photon-counting LiDAR data. Our new proposed algorithm consists of three key steps. Firstly, the noise photons were filtered out using a noise removal algorithm based on localized statistical analysis. Secondly, we classified the signal photons into canopy photons and ground photons by conducting a series of operations, including elevation frequency histogram building, empirical mode decomposition (EMD), and progressive densification. At the same time, we also identified the top of canopy (TOC) photons from canopy photons by percentile statistics method. Thereafter, the ground and TOC surfaces were generated from ground photons and TOC photons by cubic spline interpolation, respectively. Finally, the ground elevation and vegetation height were estimated by retrieved ground and TOC surfaces. The results indicate that the noise removal algorithm is effective in identifying background noise and preserving signal photons. The retrieved ground elevation is more accurate than the retrieved vegetation height, and the results of nighttime data are better than those of the corresponding daytime data. Specifically, the root-mean-square error (RMSE) values of ground elevation estimates range from 2.25 to 6.45 m for daytime data and 2.03 to 6.03 m for nighttime data. The RMSE values of vegetation height estimates range from 4.63 to 8.92 m for daytime data and 4.55 to 8.65 m for nighttime data. Our algorithm performs better than the previous algorithms in estimating ground elevation and vegetation height due to lower RMSE values. Additionally, the results also illuminate that the photon classification algorithm effectively reduces the negative effects of slope and vegetation coverage. Overall, our paper provides an effective solution for estimating ground elevation and vegetation height from micro-pulse photon-counting LiDAR data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A main direction-based noise removal algorithm for ICESat-2 photon-counting LiDAR data;Journal of Geodesy;2024-09

2. ALCSF: An adaptive and anti-noise filtering method for extracting ground and top of canopy from ICESat-2 LiDAR data along single tracks;ISPRS Journal of Photogrammetry and Remote Sensing;2024-09

3. A Slope Correction Method for Ground Photon Extraction Over Mountainous Forest AREAs;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

4. Nasa’s Surface Topography and Vegetation Study;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. An Optimal Denoising Method for Spaceborne Photon-Counting LiDAR Based on a Multiscale Quadtree;Remote Sensing;2024-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3