Climate Data Records from Meteosat First Generation Part I: Simulation of Accurate Top-of-Atmosphere Spectral Radiance over Pseudo-Invariant Calibration Sites for the Retrieval of the In-Flight Visible Spectral Response

Author:

Govaerts Yves,Rüthrich Frank,John Viju,Quast RalfORCID

Abstract

Meteosat First-Generation satellites have acquired more than 30 years of observations that could potentially be used for the generation of a Climate Data Record. The availability of harmonized and accurate a Fundamental Climate Data Record is a prerequisite to such generation. Meteosat Visible and Infrared Imager radiometers suffer from inaccurate pre-launch spectral function characterization and spectral ageing constitutes a serious limitation to achieve such prerequisite. A new method was developed for the retrieval of the pre-launch instrument spectral function and its ageing. This recovery method relies on accurately simulated top-of-atmosphere spectral radiances matching observed digital count values. This paper describes how these spectral radiances are simulated over pseudo-invariant targets such as open ocean, deep convective clouds and bright desert surface. The radiative properties of these targets are described with a limited number of parameters of known uncertainty. Typically, a single top-of-atmosphere radiance spectrum can be simulated with an estimated uncertainty of about 5%. The independent evaluation of the simulated radiance accuracy is also addressed in this paper. It includes two aspects: the comparison with narrow-band well-calibrated radiometers and a spectral consistency analysis using SEVIRI/HRVIS band on board Meteosat Second Generation which was accurately characterized pre-launch. On average, the accuracy of these simulated spectral radiances is estimated to be about ±2%.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3