A Fast Algorithm for Rail Extraction Using Mobile Laser Scanning Data

Author:

Lou Yidong,Zhang Tian,Tang Jian,Song Weiwei,Zhang Yi,Chen Liang

Abstract

Railroads companies conduct regular inspections of their tracks to maintain and update the geographic data for railway management. Traditional railroad inspection methods, such as onsite inspections and semi-automated analysis of imagery and video data, are time consuming and ineffective. This study presents an automated effective method to detect tracks on the basis of their physical shape, geometrical properties, and reflection intensity feature. This study aims to investigate the feasibility of fast extraction of railroad using onboard Velodyne puck data collected by mobile laser scanning (MLS) system. Results show that the proposed method can be executed rapidly on an i5 computer with at least 10 Hz. The MLS system used in this study comprises a Velodyne puck/onboard GNSS receiver/inertial measurement unit. The range accuracy of Velodyne puck equipment is 2 cm, which fulfills the need of precise mapping. Notably, positioning STD is lower than 4 cm in most areas. Experiments are also undertaken to evaluate the timing of the proposed method. Experimental results indicate that the proposed method can extract 3D tracks in real-time and correctly recognize pairs of tracks. Accuracy, precision, and sensitivity of total test area are 99.68%, 97.55%, and 66.55%, respectively. Results suggest that in a multi-track area, close collaboration between MLS platforms mounted on several trains is required.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3