Deep Reinforcement Learning-Based Joint Low-Carbon Optimization for User-Side Shared Energy Storage–Distribution Networks

Author:

Zhong Lihua1,Ye Tong23,Yang Yuyao1,Pan Feng1,Feng Lei1,Qi Shuzhe1,Huang Yuping23ORCID

Affiliation:

1. Metrology Center of Guangdong Power Grid Co., Ltd., Qingyuan 511545, China

2. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

3. School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

As global energy demand rises and climate change poses an increasing threat, the development of sustainable, low-carbon energy solutions has become imperative. This study focuses on optimizing shared energy storage (SES) and distribution networks (DNs) using deep reinforcement learning (DRL) techniques to enhance operation and decision-making capability. An innovative dynamic carbon intensity calculation method is proposed, which more accurately calculates indirect carbon emissions of the power system through network topology in both spatial and temporal dimensions, thereby refining carbon responsibility allocation on the user side. Additionally, we integrate user-side SES and ladder-type carbon emission pricing into DN to create a low-carbon economic dispatch model. By framing the problem as a Markov decision process (MDP), we employ the DRL, specifically the deep deterministic policy gradient (DDPG) algorithm, enhanced with prioritized experience replay (PER) and orthogonal regularization (OR), to achieve both economic efficiency and environmental sustainability. The simulation results indicate that this method significantly reduces the operating costs and carbon emissions of DN. This study offers an innovative perspective on the synergistic optimization of SES with DN and provides a practical methodology for low-carbon economic dispatch in power systems.

Funder

National Key R&D Program of China

Science and Technology Project of China Southern Power Grid

Energy Bureau of Guangdong Development and Reform Commission

Guangdong Basic and Applied Basic Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3