Battery-Free Wireless Light-Sensing Tag Based on a Long-Range Dual-Port Dual-Polarized RFID Platform

Author:

Wagih MahmoudORCID,Weddell Alex S.ORCID,Beeby SteveORCID

Abstract

Radio frequency identification (RFID) represents an emerging platform for passive RF-powered wireless sensing. Differential Multi-port RFID systems are widely used to enable multiple independent measurands to be gathered, or to overcome channel variations. This paper presents a dual-port/dual-integrated circuit (IC) RFID sensing tag based on a shared aperture dual-polarized microstrip antenna. The tag can be loaded with different sensors where the received signal strength indicator (RSSI) of one IC is modulated using a sensor, and the other acts as a measurand-insensitive reference, for differential sensing. The 868 MHz tag maintains a minimum unloaded read range of 14 m insensitive to deployment on metals or lossy objects, which represents the longest reported range of a multi-port RFID sensing tag. The tag is loaded with a light-dependent resistor (LDR) to demonstrate its functionality as a battery-less wireless RFID light sensor. Following detailed RF characterization of the LDR, it is shown that the impedance, and consequently the RSSI, of the sensing tag are modulated by changing the light intensity, whereas the reference port maintains a mostly unchanged response for a correlated channel. The proposed tag shows the potential for channel variations-tolerant differential RFID sensing platforms based on polarization-diversity antennas.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wide-range soft anisotropic thermistor with a direct wireless radio frequency interface;Nature Communications;2024-01-11

2. RFID-Enabled Energy Harvesting using Unidirectional Electrically-Small Rectenna Arrays;2023 17th European Conference on Antennas and Propagation (EuCAP);2023-03-26

3. UHF RFID and NFC Point-of-Care—Architecture, Security, and Implementation;IEEE Journal of Radio Frequency Identification;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3