Abstract
Wireless sensor networks usually suffer from the issue of time synchronization discrepancy due to environmental effects or clock management collapse. This will result in time delays between the dynamic responses collected by wireless sensors. If non-synchronized dynamic response data are directly used for structural modal identification, it leads to the misestimation of modal parameters. To overcome the non-synchronization issue, this study proposes a time synchronization approach to detect and correct asynchronous dynamic responses based on frequency domain decomposition (FDD) with frequency-squeezing processing (FSP). By imposing the expected relationship between modal phase angles extracted from the first-order singular value spectrum, the time lags between different sensors can be estimated, and synchronization can be achieved. The effectiveness of the proposed approach is fully demonstrated by numerical and experimental studies, as well as field measurement of a large-span spatial structure. The results verify that the proposed approach is effective for the time synchronization of wireless accelerometer sensors.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献