Nonlinear Canonical Correlation Analysis:A Compressed Representation Approach

Author:

Painsky AmichaiORCID,Feder MeirORCID,Tishby NaftaliORCID

Abstract

Canonical Correlation Analysis (CCA) is a linear representation learning method that seeks maximally correlated variables in multi-view data. Nonlinear CCA extends this notion to a broader family of transformations, which are more powerful in many real-world applications. Given the joint probability, the Alternating Conditional Expectation (ACE) algorithm provides an optimal solution to the nonlinear CCA problem. However, it suffers from limited performance and an increasing computational burden when only a finite number of samples is available. In this work, we introduce an information-theoretic compressed representation framework for the nonlinear CCA problem (CRCCA), which extends the classical ACE approach. Our suggested framework seeks compact representations of the data that allow a maximal level of correlation. This way, we control the trade-off between the flexibility and the complexity of the model. CRCCA provides theoretical bounds and optimality conditions, as we establish fundamental connections to rate-distortion theory, the information bottleneck and remote source coding. In addition, it allows a soft dimensionality reduction, as the compression level is determined by the mutual information between the original noisy data and the extracted signals. Finally, we introduce a simple implementation of the CRCCA framework, based on lattice quantization.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference57 articles.

1. RELATIONS BETWEEN TWO SETS OF VARIATES

2. Multi-view learning of word embeddings via cca;Dhillon,2011

3. Improving image-sentence embeddings using large weakly annotated photo collections;Gong,2014

4. Facesync: A linear operator for measuring synchronization of video facial images and audio tracks;Slaney,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universal Features for High-Dimensional Learning and Inference;Foundations and Trends® in Communications and Information Theory;2024

2. An Approach to Canonical Correlation Analysis Based on Rényi’s Pseudodistances;Entropy;2023-04-25

3. Associations between university students’ online learning preferences, readiness, and satisfaction;Knowledge Management & E-Learning: An International Journal;2022-06-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3