Time Reversal Method for Guided Waves with Multimode and Multipath on Corrosion Defect Detection in Wire

Author:

Zhang YaoyeORCID,Li Dongsheng,Zhou Zhi

Abstract

This study identified depths of artificial pitting corrosion on the galvanized steel wires, frequently used in bridge cables, based on the time reversal method (TRM). Specifically, the multimode longitudinal ultrasonic guided waves are excited in terms of characteristics of radical distribution of the normalized average energy flow density (NAPFD) in a wire. Furthermore, the complex defect scattered signals are difficult to interpret, which are attributed to multimode, multipath and dispersion, but are considered to enhance the focused energy through the TRM while the different depths of defect are explicitly identified by the normalized amplitudes of reconstructed wave packets. Finally, in contrast to the traditional monitoring approach relying on the amplitude of defect echo, the proposed method in this study is demonstrated to have a higher sensitivity to recognize the progressive increase of corrosion depth.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3