Experimental Investigation of a Moving Packed-Bed Heat Exchanger Suitable for Concentrating Solar Power Applications

Author:

Saleh Nader S.,Alaqel Shaker,Djajadiwinata Eldwin,Saeed Rageh S.,Al-Suhaibani Zeyad,Zeitoun Obida,Al-Ansary Hany,Alswaiyd Abdulelah,El-Leathy AbdelrahmanORCID,Danish Syed,Jeter Sheldon,Byman Ashley,Jordison Neville,Moon David

Abstract

This paper presents a thermal performance evaluation of a novel particle-to-air heat exchanger. The heat exchanger has a patented design with a shell-and-tube configuration. Solid particles move as a dense packed-bed inside the vertical tubes of the heat exchanger whereas air flows on the shell-side. This design avoids a number of limitations associated with the state-of-the-art heat exchangers in the same category, such as the stagnant/void zones and the prolonged residence time. The heat exchanger has a 50-kW thermal duty; it has been integrated into the particle-based concentrating solar power facility located at the campus of King Saud University in Riyadh, Saudi Arabia. The detailed description of the heat exchanger and the integration process is introduced. The recuperated air of the facility’s power cycle is used to heat the solid particles being circulated inside the facility. The solid particles used in this study are engineered particles called Carbobead CP with 0.3 mm mean diameter. The effect of particle flow rate on the thermal performance of the heat exchanger is investigated. The results show that as the particle flow rate increases, the overall heat transfer coefficient (U) increases; a maximum value was measured to be 150 W/m2-°C based on LMTD calculations. The measurement accuracy was verified by repeating several tests; a slight variation was observed in the measured U. The results also show that only a small air pressure drop (~5 kPa) was measured across the heat exchanger. Furthermore, it was found that a significant part of the heat exchange occurred at the bottom section of the heat exchanger.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3