Anaerobic Digestate from Biogas Plants—Nuisance Waste or Valuable Product?

Author:

Szymańska MagdalenaORCID,Ahrends Hella EllenORCID,Srivastava Amit KumarORCID,Sosulski TomaszORCID

Abstract

Biogas production in waste-to-energy plants will support the decarbonization of the energy sector and enhance the EU’s energy transformation efforts. Digestates (DG) formed during the anaerobic digestion of organic wastes contain large amounts of nutrients. Their use for plant fertilization allows for diversifying and increasing the economic efficiency of farming activities. However, to avoid regional production surpluses, processing technologies allowing the acquisition of products that can be transported over long distances are required. This study therefore aimed at determining the effect of applied methods of DG treatment on the chemical composition of the resulting products and their effect on the yields and chemical composition of plants. The following digestate-based products (DGBPs) were tested: two different digestates (DGs), their liquid (LF) and solid fractions (SF) and pellets from DGs (PDG), and pellets form SFs (PSF). Results from the experiment show that during SF/LF separation of DGs, >80% of nitrogen and 87% of potassium flows to LFs, whereas >60% of phosphorus and 70% of magnesium flows to SFs. The highest yields were obtained using untreated DGs and LFs. The application of DGs and LFs was not associated with a leaching of nutrients to the environment (apparent nutrients recovery from these products exceeded 100%). Pelletized DG and SF forms can be used as slow-release fertilizer, although their production leads to significant nitrogen losses (>95%) by ammonia volatilization.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3