A New Method of Inland Water Ship Trajectory Prediction Based on Long Short-Term Memory Network Optimized by Genetic Algorithm

Author:

Qian Long,Zheng Yuanzhou,Li Lei,Ma Yong,Zhou Chunhui,Zhang Dongfang

Abstract

Ship position prediction plays a key role in the early warning and safety of inland waters and maritime navigation. Ship pilots must have in-depth knowledge of the future position of their ship and target ship in a specific time period when maneuvering the ship to effectively avoid collisions. However, prediction accuracy and computing efficiency are crucial issues that need to be worked out at present. To solve these problems, in this paper, the deep long short-term memory network framework (LSTM) and genetic algorithm (GA) are introduced to predict the ship trajectory of inland water. Firstly, the collected actual automatic identification system (AIS) data are preprocessed and a series of typical trajectories are extracted from them; then, the LSTM network is used to predict the typical trajectories in real time. Considering that the hyperparameters of the LSTM network have difficulty obtaining the optimal solution manually, the GA is used to optimize hyperparameters of LSTM; finally, the GA-LSTM trajectory prediction model is constructed with the optimal network parameters and compared with the traditional support vector machine (SVM) model and LSTM model. The experimental results show that the GA-LSTM model effectively improves the accuracy and speed of trajectory prediction, with outstanding performance and good generalization, which possess certain reference values for the development of collision avoidance of unmanned ships.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3