Compressed Sensing Super-Resolution Method for Improving the Accuracy of Infrared Diagnosis of Power Equipment

Author:

Wang Yan,Zhang Jialin,Wang Lingjie

Abstract

The infrared image of power equipment plays a crucial role in identifying faults, monitoring equipment condition, and so on. The low resolution and low definition of infrared images in applications contribute to the low accuracy of infrared diagnosis. A super-resolution reconstruction method of infrared image, based on compressed sensing theory, is proposed. Firstly, by analyzing the variation of high-frequency information in infrared images with different blurring degrees, the image gradient norm ratio is introduced to estimate the blur kernel matrix in the degradation model a priori. Then, in the process of image reconstruction, we add the full variational regularization term to the traditional compressed sensing model, and design a two-step full variational sparse reconstruction algorithm. Experimental results verify the effectiveness of the method. Compared with the existing classical super-resolution methods, this method offers improvement in subjective visual effect and objective evaluation index. In addition, the final image recognition and infrared diagnosis experiments show that this method is helpful to improve the accuracy of infrared diagnosis of power equipment.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference32 articles.

1. Fusion of the 5G Communication and the Ubiquitous Electric Internet of Things: Application Analysis and Research Prospects;Wang;Power Syst. Technol.,2019

2. Discussion on Key Technology and Operation & Maintenance of Intelligent Power Equipment;Zhao;Autom. Electr. Power Syst.,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3