Can AI Automatically Assess Scan Quality of Hip Ultrasound?

Author:

Hareendrananthan Abhilash Rakkunedeth,Mabee Myles,Chahal Baljot S.ORCID,Dulai Sukhdeep K.,Jaremko Jacob L.ORCID

Abstract

Ultrasound images can reliably detect Developmental Dysplasia of the Hip (DDH) during early infancy. Accuracy of diagnosis depends on the scan quality, which is subjectively assessed by the sonographer during ultrasound examination. Such assessment is prone to errors and often results in poor-quality scans not being reported, risking misdiagnosis. In this paper, we propose an Artificial Intelligence (AI) technique for automatically determining scan quality. We trained a Convolutional Neural Network (CNN) to categorize 3D Ultrasound (3DUS) hip scans as ‘adequate’ or ‘inadequate’ for diagnosis. We evaluated the performance of this AI technique on two datasets—Dataset 1 (DS1) consisting of 2187 3DUS images in which each image was assessed by one reader for scan quality on a scale of 1 (lowest quality) to 5 (optimal quality) and Dataset 2 (DS2) consisting of 107 3DUS images evaluated semi-quantitatively by four readers using a 10-point scoring system. As a binary classifier (adequate/inadequate), the AI technique gave highly accurate predictions on both datasets (DS1 accuracy = 96% and DS2 accuracy = 91%) and showed high agreement with expert readings in terms of Intraclass Correlation Coefficient (ICC) and Cohen’s kappa coefficient (K). Using our AI-based approach as a screening tool during ultrasound scanning or postprocessing would ensure high scan quality and lead to more reliable ultrasound hip examination in infants.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3