Aerodynamic Effects of Ceiling and Ground Vicinity on Flapping Wings

Author:

Meng Xueguang,Han YinghuiORCID,Chen ZengshuangORCID,Ghaffar Anas,Chen Gang

Abstract

The combined ceiling and ground effect on the aerodynamics of a hovering flapping wing is investigated using numerical simulations. In the simulations, the wing was located between the ceiling and the ground. Simulations were carried out for different wall clearances at two Reynolds numbers (Re = 10 and 100). Special efforts were paid to whether there exists aerodynamic coupling between the ceiling effect and the ground effect. At Re = 10, the combined ceiling and ground effect increases the aerodynamic forces monotonically through two effects, namely the narrow-channel effect and the downwash-reducing effect. Additionally, there exists a coupling effect of the ceiling and the ground for the combined case at Re = 10, where the force enhancement of the combined effect is much more significant than the sum of the ceiling-only effect and the ground-only effect. At Re = 100, the combined effect of ceiling and ground causes three non-monotonic force regimes (force enhancement, reduction and recovery) with increasing wall clearance. The narrow-channel effect at Re = 100 leads to a monotonic force trend, while the downwash-reducing effect results in a non-monotonic force trend. The two effects eventually lead to the three force regimes at Re = 100. Unlike the Re = 10 case, the coupling effect at Re = 100 is small.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3