Malaysian Virgin Soil Extracts as Natural Growth Enhancer for Targeted Green Microalgae Species

Author:

Nallapan Maniyam MaegalaORCID,Abdullah Hasdianty,Ahmad Mohd FadzliORCID,Hashim Emi Fazlina,Sjahrir FridelinaORCID,Komatsu Kazuhiro,Kuwahara Victor S.ORCID,Yaacob Nor SuhailaORCID

Abstract

The microalgae-based industries are trending upwards, particularly as the feed ingredient for aquaculture. Therefore, a sustainable and reasonably priced source of nutrients to support the mass cultivation of microalgae is in great demand. The present study explored the feasibility of using extracts from virgin soil as natural growth-promoting nutrients for the cultivation of Nannochloropsis oculata, Nannochloropsis oceanica, and Chlorella sorokiniana. The extracts were obtained from Bera Lake Forest using five different treatment methods. The greatest retrieval of dissolved organic carbon, total dissolved nitrogen, and total dissolved phosphorus were observed with the autoclave treatment method at 121 °C twice, yielding a respective concentration of 336.56 mg/L, 13.40 mg/L, and 0.14 mg/L, respectively. The highest growth was recorded with Nannochloropsis oculata resulting in an optical density of 0.488 ± 0.009 (×103 cell mL−1), exhibiting 43% and 44% enhanced growth in comparison to Nannochloropsis oceanica and Chlorella sorokiniana, respectively. The specific growth rate (0.114 a ± 0.007 d−1) was the highest for Nannochloropsis oculata when the 24 h-extraction method was used, whereas the utilization of the autoclave 121 °C twice treatment method contributed to the highest specific growth of Nannochloropsis ocenica (0.069 a ± 0.003 d−1) and Chlorella sorokiniana (0.080 a ± 0.001 d−1). Collectively, these findings suggested that the addition of soil extracts which is sustainable and inexpensive promoted the growth of microalgae compared to the control system. A further study investigating the optimum culture conditions for enhanced microalgae growth will be carried out for the mass production of microalgae biomass.

Funder

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3