Abstract
This paper investigates the residual stresses induced by a longitudinal turning operation in 15-5PH martensitic stainless steel. An experimental investigation has quantified the sensitivity of residual stresses to cutting speed, feed, tool geometry and tool flank wear. In parallel, a 3D hybrid model, previously developed, has been applied to each case study. This modelling approach consists of replacing tooling and chipping by equivalent thermal and mechanical loadings. These equivalent loadings are moved onto the machined surface to compute the final residual stress state. It has shown that tool geometry and tool flank wear have a dominant effect on residual stresses compared to cutting speed and feed rate. However, cutting speed influences the intensity of the compressive peak, to some extent, whereas feed influences the affected depth. This work has also shown that the 3D hybrid model is able to predict residual stresses, as well as the sensitivity to cutting parameters, with reasonable agreement.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering,Mechanics of Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献