Cytotoxicity, Anti-Obesity and Anti-Diabetic Activities of Heteromorpha arborescens (Spreng.) Cham Leaves

Author:

Abifarin Taiwo Oluwafunmilola,Otunola Gloria AderonkeORCID,Afolayan Anthony Jide

Abstract

This study investigated the cytotoxicity, anti-obesity and anti-diabetic potentials of blanched, aqueous and ethanol extracts of Heteromorpha arborescens (Spreng.) Cham leaves. The results revealed that both ethanol and aqueous extracts exhibited considerable inhibition against α-glucosidase (IC50 of 627.29 ± 4.62 µg/mL and 576.46 ± 3.21 µg/mL respectively), while the blanched extract showed weak α-glucosidase inhibition (IC50; 855.38 ± 4.29 µg/mL) and the aqueous extract showed the best α-amylase inhibition (IC50; 583.74 ± 5.87 µg/mL). However, weak α-amylase inhibition was observed in the ethanol (IC50; 724.60 ± 4.33 µg/mL) and blanched extracts (IC50; 791.63 ± 3.76 µg/mL). The toxicity of the extracts is indicated by LC50 values as 154.75 µg/mL, 125 µg/mL and 90.58 µg/mL for ethanol, aqueous and blanched extracts respectively, indicating the blanched extract to be the most toxic. Moderate glucose utilization in both C3A and L6 cells was also observed for the aqueous and ethanol extracts which may be attributed to the relatively lower toxicity levels present. However, glucose utilization was very weak for the blanched extract, which may be due to higher level of cytotoxicity it possessed. Relatively weaker lipase inhibition was observed for the ethanol (IC50; 699.3 ± 1.33 µg/mL), aqueous (IC50; 811.52 ± 3.52 µg/mL) and blanched extracts (IC50; 1152.7 ± 4.61 µg/mL) compared to orlistat (IC50; 56.88 ± 0.11 µg/mL). However, there was no reasonable reduction in lipid accumulation observed in all the extract treated cells. These observations suggest that ethanol and aqueous extracts of H. arborescens leaf are promising as new agents for the treatment of diabetes and its acclaimed anti-obesity potentials are likely due to its lipase, α-amylase and α-glucosidase inhibition.

Funder

Govan Mbeki Research and Dvelopment Center, University of Fort Hare

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3