Unraveling the Role of Amino Acid L-Tryptophan Concentration in Enhancing CO2 Hydrate Kinetics

Author:

Li Yan1,Gambelli Alberto Maria2ORCID,Rao Yizhi1,Liu Xuejian1,Yin Zhenyuan1ORCID,Rossi Federico3ORCID

Affiliation:

1. Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Civil and Environmental Engineering Department, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

3. Engineering Department, University of Perugia, Via G. Duranti 93, 06125 Perugia, Italy

Abstract

Carbon dioxide (CO2) hydrates have garnered significant interest as a promising technology for CO2 capture and storage due to its high storage capacity and moderate operating conditions. The kinetics of CO2 hydrate formation is a critical factor in determining the feasibility of hydrate-based CO2 capture and storage technologies. This study systematically investigates the promotional effects of the amino acid L-tryptophan (L-trp) on CO2 hydrate formation kinetics and morphology under stirred and unstirred conditions. In the stirred system, experiments were conducted in a high-pressure 100 mL reactor with 0.05, 0.10, and 0.30 wt% L-trp solution. CO2 gas uptake kinetics and morphological evolution were monitored using a high-resolution digital camera. Results showed that L-trp promoted CO2 hydrate formation kinetics without delay, with rapid CO2 consumption upon nucleation. Morphological evolution revealed rapid hydrate formation, wall-climbing growth, and dendritic morphology filling the bulk solution. Under unstirred conditions, experiments were performed in a larger 1 L reactor with 0.1 wt% and 0.5 wt% L-trp solutions to assess the influence of additive concentration on hydrate formation thermodynamics and kinetics. Results demonstrated that L-trp influenced both thermodynamics and kinetics of CO2 hydrate formation. Thermodynamically, 0.1 wt% L-trp resulted in the highest hydrate formation, indicating an optimal concentration for thermodynamic promotion. Kinetically, increasing L-trp concentration from 0.1 wt% to 0.5 wt% reduced formation time, demonstrating a proportional relationship between L-trp concentration and formation kinetics. These findings provide insights into the role of L-trp in promoting CO2 hydrate formation and the interplay between additive concentration, thermodynamics, and kinetics. The results can inform the development of effective hydrate-based technologies for CO2 sequestration, highlighting the potential of amino acids as promoters in gas hydrate.

Funder

Shenzhen Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3