3D Numerical Modeling to Assess the Energy Performance of Solid–Solid Phase Change Materials in Glazing Systems

Author:

Arasteh Hossein1ORCID,Maref Wahid1ORCID,Saber Hamed H.2ORCID

Affiliation:

1. Department of Construction Engineering, École de Technologie Supérieure (ÉTS), University of Quebec, Montreal, QC H3C 1K3, Canada

2. Deanship of Research and Industrial Development, Mechanical Engineering Department, Jubail Industrial College, Royal Commission of Jubail and Yanbu, Jubail Industrial City 31961, Saudi Arabia

Abstract

This research investigates the energy efficiency of a novel double-glazing system incorporating solid–solid phase change materials (SSPCMs), which offer significant advantages over traditional liquid–solid phase change materials. The primary objective of this study is to develop a 3D numerical model using the finite volume method, which will be followed by a parametric study under real climatic boundary conditions. A proposed double-glazing setup featuring a 2 mm layer of SSPCM applied on the inner glass pane within the air gap is modeled and analyzed. The simulations consider various transient temperatures and ranges of the SSPCM to evaluate the energy performance of the system under different weather conditions of Miami, FL during the coldest and hottest days of the year, both in sunny and cloudy conditions. The results demonstrate a notable improvement in energy performance compared to standard double-glazing windows (DGWs), with the most efficient SSPCM configuration exhibiting a phase transition temperature and range of 25 °C and 1 °C, respectively. This configuration achieved energy savings of 24%, 26%, and 23% during summer sunny, winter sunny, and winter cloudy days, respectively, relative to DGWs during cooling and heating degree hours. However, a 3% energy loss was observed during summer cloudy days. Overall, the findings of this study have shown the potential for energy savings by incorporating SSPCM with suitable thermophysical properties into double-glazing systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3