Advancing Reservoir Evaluation: Machine Learning Approaches for Predicting Porosity Curves

Author:

Ali Nafees1234,Fu Xiaodong1234,Chen Jian1234,Hussain Javid1234,Hussain Wakeel5,Rahman Nosheen12,Iqbal Sayed Muhammad12,Altalbe Ali6ORCID

Affiliation:

1. State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. China-Pakistan Joint Research Center on Earth Sciences, Islamabad 45320, Pakistan

4. Hubei Key Laboratory of Geo-Environmental Engineering, Wuhan 430071, China

5. School of Geophysics and Geomatics, China University of Geosciences, Wuhan 430079, China

6. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

Porosity assessment is a vital component for reservoir evaluation in the oil and gas sector, and with technological advancement, reliance on conventional methods has decreased. In this regard, this research aims to reduce reliance on well logging, purposing successive machine learning (ML) techniques for precise porosity measurement. So, this research examines the prediction of the porosity curves in the Sui main and Sui upper limestone reservoir, utilizing ML approaches such as an artificial neural networks (ANN) and fuzzy logic (FL). Thus, the input dataset of this research includes gamma ray (GR), neutron porosity (NPHI), density (RHOB), and sonic (DT) logs amongst five drilled wells located in the Qadirpur gas field. The ANN model was trained using the backpropagation algorithm. For the FL model, ten bins were utilized, and Gaussian-shaped membership functions were chosen for ideal correspondence with the geophysical log dataset. The closeness of fit (C-fit) values for the ANN ranged from 91% to 98%, while the FL model exhibited variability from 90% to 95% throughout the wells. In addition, a similar dataset was used to evaluate multiple linear regression (MLR) for comparative analysis. The ANN and FL models achieved robust performance as compared to MLR, with R2 values of 0.955 (FL) and 0.988 (ANN) compared to 0.94 (MLR). The outcomes indicate that FL and ANN exceed MLR in predicting the porosity curve. Moreover, the significant R2 values and lowest root mean square error (RMSE) values support the potency of these advanced approaches. This research emphasizes the authenticity of FL and ANN in predicting the porosity curve. Thus, these techniques not only enhance natural resource exploitation within the region but also hold broader potential for worldwide applications in reservoir assessment.

Funder

Institutional Fund Projects

Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3