A Coupled Model of Multiscaled Creep Deformation and Gas Flow for Predicting Gas Depletion Characteristics of Shale Reservoir at the Field Scale

Author:

Yang Daosong12,Cui Guanglei12ORCID,Tan Yuling34,Zhu Aiyu5,Liu Chun6,Li Yansen34

Affiliation:

1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110004, China

2. Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110819, China

3. Hebei Research Center of the Basic Discipline Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

4. Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

5. Institue of Geophysics, China Earthquake Administration, Beijing 100081, China

6. The National Joint Engineering Laboratory of Internet Applied Technology of Mines, China University of Mining & Technology (CUMT), Xuzhou 221116, China

Abstract

The viscoelastic behavior of shale reservoirs indeed impacts permeability evolution and further gas flow characteristics, which have been experimentally and numerically investigated. However, its impact on the gas depletion profile at the field scale has seldom been addressed. To compensate for this deficiency, we propose a multiscaled viscoelasticity constitutive model, and furthermore, a full reservoir deformation–fluid flow coupled model is formed under the frame of the classical triple-porosity approach. In the proposed approach, a novel friction-based creep model comprising two distinct series of parameters is developed to generate the strain–time profiles for hydraulic fracture and natural fracture systems. Specifically, an equation considering the long-term deformation of hydraulic fracture, represented by the softness of Young’s modulus, is proposed to describe the conductivity evolution of hydraulic fractures. In addition, an effective strain permeability model is employed to replicate the permeability evolution of a natural fracture system considering viscoelasticity. The coupled model was implemented and solved within the framework of COMSOL Multiphysics (Version 5.4). The proposed model was first verified using a series of gas production data collected from the Barnett shale, resulting in good fitting results. Subsequently, a numerical analysis was conducted to investigate the impacts of the newly proposed parameters on the production process. The transient creep stage significantly affects the initial permeability, and its contribution to the permeability evolution remains invariable. Conversely, the second stage controls the long-term permeability evolution, with its dominant role increasing over time. Creep deformation lowers the gas flow rate, and hydraulic fracturing plays a predominant role in the early term, as the viscoelastic behavior of the natural fracture system substantially impacts the long-term gas flow rate. A higher in situ stress and greater formation depth result in significant creep deformation and, therefore, a lower gas flow rate. This work provides a new tool for estimating long-term gas flow rates at the field scale.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Key Project of the Natural Science Foundation of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3