Machine-Learning-Based Anomaly Detection for GOOSE in Digital Substations

Author:

Nhung-Nguyen Hong1ORCID,Girdhar Mansi2ORCID,Kim Yong-Hwa3ORCID,Hong Junho2ORCID

Affiliation:

1. Department of AI and Software Enineering, School of Computing, Gachon Unviersity, Seongnam-si 1342, Gyeonggi-do, Republic of Korea

2. Department of Electrical and Computer Engineering, University of Michigan-Dearborn, Dearborn, MI 48128, USA

3. Department of Artificial Intelligence, Korea National University of Transportation, Uiwang-si 16106, Gyeonggi-do, Republic of Korea

Abstract

Digital substations have adopted a high amount of information and communication technology (ICT) and cyber–physical systems (CPSs) for monitoring and control. As a result, cyber attacks on substations have been increasing and have become a major concern. An intrusion-detection system (IDS) could be a solution to detect and identify the abnormal behaviors of hackers. In this paper, a Deep Neural Network (DNN)-based IDS is proposed to detect malicious generic object-oriented substation event (GOOSE) communication over the process and station bus network, followed by the multiclassification of the cyber attacks. For training, both the abnormal and the normal substation networks are monitored, captured, and logged, and then the proposed algorithm is applied for distinguishing normal events from abnormal ones within the network communication packets. The designed system is implemented and tested with a real-time IEC 61850 GOOSE message dataset using two different approaches. The experimental results show that the proposed system can successfully detect intrusions with an accuracy of 98%. In addition, a comparison is performed in which the proposed IDS outperforms the support vector machine (SVM)-based IDS.

Funder

Korea Government [Ministry of Science and ICT (MSIT)]

Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3