Biomass-Fueled Organic Rankine Cycles: State of the Art and Future Trends

Author:

Heidarnejad Parisa1,Genceli Hadi2,Hashemian Nasim3,Asker Mustafa4,Al-Rawi Mohammad56ORCID

Affiliation:

1. Department of Mechanical Engineering, Faculty of Engineering, Istanbul Gedik University, 34876 Istanbul, Türkiye

2. Faculty of Mechanical Engineering, Yildiz Technical University, 34349 Istanbul, Türkiye

3. Faculty of Environment, University of Tehran, Tehran 1417853111, Iran

4. Faculty of Engineering, Aydın Adnan Menderes University, Central Campus, 09010 Aydın, Türkiye

5. Faculty of Engineering, Chemical and Materials Engineering, The University of Auckland, Auckland 1010, New Zealand

6. Centre for Engineering and Industrial Design, Waikato Institute of Technology, Hamilton 3240, New Zealand

Abstract

Biomass-fueled organic Rankine cycles (ORCs) are widely utilized technologies for power production because of their simplicity, low cost, and relatively high efficiencies. Furthermore, raw material availability and topographical independency make these systems preferable to other renewable-fueled power generation systems. A deep and comprehensive understanding of biomass-fueled organic Rankine cycles will provide researchers with a solid foundation to prioritize their investigations and assist future developments in this field. In this regard, feedstocks and their properties, biomass conversion mechanisms, and biomass-fueled power generation systems are discussed in this study. Power generation technologies based on coal and waste as feedstock have been widely investigated in the literature due to higher energy content and technological maturity. Additionally, depending on the type of biomass available, the scale of the power plant, and economic and environmental considerations, the most common technologies utilized for biomass conversion are combustion, gasification, and anaerobic digestion. Finally, the authors investigate various aspects of biomass-fueled organic Rankine cycles, including working fluids, analysis methods, and environmental issues. Since maximizing product yield is key in biomass-based power generation systems, technical assessment of these systems has been a primary focus of many studies. Further research is required on integrated environmental and socio-economic approaches, along with Machine Learning algorithms. Future advancements focusing on integration of feedstock with other renewable energy sources, efficient working fluids like nanofluids, and high-tech heat exchangers will drive the development of biomass-fueled ORC systems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3