Short-Term Power Load Forecasting Method Based on Feature Selection and Co-Optimization of Hyperparameters

Author:

Liu Zifa1,Zheng Siqi1,Li Kunyang1

Affiliation:

1. School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China

Abstract

The current power load exhibits strong nonlinear and stochastic characteristics, increasing the difficulty of short-term prediction. To more accurately capture data features and enhance prediction accuracy and generalization ability, in this paper, we propose an efficient approach for short-term electric load forecasting that is grounded in a synergistic strategy of feature optimization and hyperparameter tuning. Firstly, a dynamic adjustment strategy based on the rate of the change of historical optimal values is introduced to enhance the PID-based Search Algorithm (PSA), enabling the real-time adjustment and optimization of the search process. Subsequently, the proposed Improved Population-based Search Algorithm (IPSA) is employed to achieve the optimal adaptive variational mode decomposition of the load sequence, thereby reducing data volatility. Next, for each load component, a Bi-directional Gated Recurrent Unit network with an attention mechanism (BiGRU-Attention) is established. By leveraging the interdependence between feature selection and hyperparameter optimization, we propose a synergistic optimization strategy based on the Improved Population-based Search Algorithm (IPSA). This approach ensures that the input features and hyperparameters for each component’s predictive model achieve an optimal combination, thereby enhancing prediction performance. Finally, the optimal parameter prediction model is used for multi-step rolling forecasting, with the final prediction values obtained through superposition and reconstruction. The case study results indicate that this method can achieve an adaptive optimization of hybrid prediction model parameters, providing superior prediction accuracy compared to the commonly used methods. Additionally, the method demonstrates robust adaptability to load forecasting across various day types and seasons. Consequently, this approach enhances the accuracy of short-term load forecasting, thereby supporting more efficient power scheduling and resource allocation.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference27 articles.

1. Review of data-driven load forecasting for integrated energy system;Zhu;Proc. CSEE,2021

2. New issues and key technologies of new power system planning under double carbon goals;Han;High Volt. Eng.,2021

3. Transformer load forecasting based on adaptive deep belief network;Yang;Proc. CSEE,2019

4. Power system short-term load forecasting based on support vector machines;Pan;Power Syst. Technol.,2004

5. Prediction of load model based on artificial neural network;Li;Trans. China Electrotech. Soc.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3