Machining of Inserts with PCD Cutting-Edge Technology and Determination of Optimum Machining Conditions Based on Roundness Deviation and Chip-Cross Section of AW 5083 AL-Alloy Verified with Grey Relation Analysis

Author:

Miškiv-Pavlík MartinORCID,Jurko Jozef

Abstract

This paper describes the important significance of cutting-edge technology in the machining of polycrystalline diamond (PCD) cutting inserts by comparing the evaluation criteria. The LASER technology of cutting-edge machining is compared with grinding and electrical discharge machining (EDM) technologies. To evaluate the data from the experiments, the Grey Relational Analysis (GRA) method was used to optimize the input factors of turning to achieve the required output parameters, namely the deviation of roundness and chip cross-section. The input factors of cutting speed, feed rate, depth of cut and corner radius were applied in the experiment for three different levels (minimum, medium and maximum). The optimal input factors for turning of aluminum alloy (AW 5083) were determined for the factorial plan according to Grey Relational Grade based on the GRA method for the multi-criteria of the output parameters. The results were confirmed by a verification test according to the GRA method and optimal values of input factors were recommended for the machining of Al-alloy (AW 5083) products. This material is currently being developed by engineers for forming selected components for the automotive and railway industries, mainly to reduce weight and energy costs. The best values of the output parameters were obtained at a cutting speed of 870 m/min, feed rate of 0.1 mm/min, depth of cut of 0.5 mm and a corner radius of 1.2 mm.

Funder

Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Agentúra na Podporu Výskumu a Vývoja

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3