Analyzing Bifurcations and Optimal Control Strategies in SIRS Epidemic Models: Insights from Theory and COVID-19 Data

Author:

Belili Mohamed Cherif1ORCID,Sahari Mohamed Lamine2ORCID,Kebiri Omar3ORCID,Zeghdoudi Halim1ORCID

Affiliation:

1. LaPS Laboratory, Department of Mathematics, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba 23000, Algeria

2. LANOS Laboratory, Department of Mathematics, Faculty of Sciences, Badji Mokhtar-Annaba University, Annaba 23000, Algeria

3. Department of Stochastics and Its Applications, Brandenburg University of Technology (BTU) Cottbus-Senftenberg, 03046 Cottbus, Germany

Abstract

This study investigates the dynamic behavior of an SIRS epidemic model in discrete time, focusing primarily on mathematical analysis. We identify two equilibrium points, disease-free and endemic, with our main focus on the stability of the endemic state. Using data from the US Department of Health and optimizing the SIRS model, we estimate model parameters and analyze two types of bifurcations: Flip and Transcritical. Bifurcation diagrams and curves are presented, employing the Carcasses method. for the Flip bifurcation and an implicit function approach for the Transcritical bifurcation. Finally, we apply constrained optimal control to the infection and recruitment rates in the discrete SIRS model. Pontryagin’s maximum principle is employed to determine the optimal controls. Utilizing COVID-19 data from the USA, we showcase the effectiveness of the proposed control strategy in mitigating the pandemic’s spread.

Funder

Erasmus-D COTTBUS03 collaborative program

Publisher

MDPI AG

Reference22 articles.

1. World Bank Group (2023, January 27). World Bank Open Data. Available online: https://data.worldbank.org/.

2. Continuous and discrete SIR-models with spatial distributions;Paeng;J. Math. Biol.,2017

3. Dynamics of an SIR epidemic model with limited medical resources revisited;Zhou;Nonlinear Anal. Real World Appl.,2012

4. Monotone iterative techniques to SIRS epidemic models with nonlinear incidence rates and distributed delays;Muroya;Nonlinear Anal. Real World Appl.,2011

5. Stability and bifurcation analysis in a discrete SIR epidemic model;Hu;Math. Comput. Simul.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3