Well Construction Action Planning and Automation through Finite-Horizon Sequential Decision-Making

Author:

Saini Gurtej Singh,Erge Oney,Ashok Pradeepkumar,van Oort EricORCID

Abstract

Well construction operations require continuous complex decision-making and multi-step action planning. Action selection at every step demands a careful evaluation of the vast action space, while guided by long-term objectives and desired outcomes. Current human-centric decision-making introduces a degree of bias, which can result in reactive rather than proactive decisions. This can lead from minor operational inefficiencies all the way to catastrophic health and safety issues. This paper details the steps in structuring unbiased purpose-built sequential decision-making systems. Setting up such systems entails representing the operation as a Markov decision process (MDP). This requires explicitly defining states and action values, defining goal states, building a digital twin to model the process, and appropriately shaping reward functions to measure feedback. The digital twin, in conjunction with the reward function, is utilized for simulating and quantifying the different action sequences. A finite-horizon sequential decision-making system, with discrete state and action space, was set up to advise on hole cleaning during well construction. The state was quantified by the cuttings bed height and the equivalent circulation density values, and the action set was defined using a combination of controllable drilling parameters (including mud density and rheology, drillstring rotation speed, etc.). A non-sparse normalized reward structure was formulated as a function of the state and action values. Hydraulics, cuttings transport, and rig state detection models were integrated to build the hole cleaning digital twin. This system was then used for performance tracking and scenario simulations (with each scenario defined as a finite-horizon action sequence) on real-world oil wells. The different scenarios were compared by monitoring state–action transitions and the evolution of the reward with actions. This paper presents a novel method for setting up well construction operations as long-term finite-horizon sequential decision-making systems, and defines a way to quantify and compare different scenarios. The proper construction of such systems is a crucial step towards automating intelligent decision-making.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3