Life Cycle Assessment of Dispersed Phase Change Material Heat Accumulators for Cooperation with Buildings in the District Heating System

Author:

Turski Michał,Jachura AgnieszkaORCID

Abstract

The wide use of energy-efficient district heating systems allows for decreased atmospheric pollution resulting from lower emissions. One of the ways to increase the efficiency of existing district heating systems, and a key element of new systems using renewable energy sources, is modern heat storage technology—the utilization of dispersed PCM heat accumulators. However, the use of different solutions and the inconsistency of selection methods make it difficult to compare the obtained results. Therefore, in this paper, using TRNSYS software, a standardization of the selection of dispersed PCM heat accumulators for cooperation with buildings in the DHS was proposed along with a Life Cycle Assessment. Life Cycle Assessment could be a good, versatile indicator for new developments in district heating systems. A new contribution to the research topic was the Life Cycle Assessment itself as well as the range of heat output of the substations up to 2000 kW and the development of nomograms and unitary values for the selection of individual parameters based on the relative amount of heat uncollected by buildings. The technical potential of heat storage value, %ΔQi,st, was from 49.4% to 59.6% of the theoretical potential of heat storage. The increases in the active volume of the PCM heat accumulator, dVPCM, and the mass of the required amount of PCM, dmst, were, respectively, 0.8 × 10−2–4.0 m3/kW and 1.3–6.7 × 10−2 kg/kW. Due to dispersed heat storage, an increase in system efficiency of 41% was achieved. LCA analysis showed that a positive impact on the environment was achieved, expressed as negative values of the Eco-indicator from −0.504 × 10−2 to −6.44 × 10−2 kPt/kW.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3