Numerical Investigations of a Non-Uniform Stator Dihedral Design Strategy for a Boundary Layer Ingestion (BLI) Fan

Author:

Pan Tianyu,Shi Kaikai,Lu Hanan,Li Zhiping,Zhang Jian

Abstract

A distributed propulsion system has the advantage of saving 5–15% fuel burn through ingesting the fuselage boundary layer of an aircraft by fan or compressor. However, due to boundary layer ingestion (BLI), the fan stage will continuously operate under serious inlet distortion. This will lead to a circumferentially non-uniform flow separation distribution on the stator blade suction surface along the annulus, which significantly decreases the fan’s adiabatic efficiency. To solve this problem, a non-uniform stator dihedral design strategy has been developed to explore its potential of improving BLI fan performance. First, the stator full-annulus blade passages were divided into blade dihedral design regions and baseline design regions on the basis of the additional aerodynamic loss distributions caused by BLI inlet distortion. Then, to find the appropriate dihedral design parameters, the full-annulus BLI fan was discretized into several portions according to the rotor blade number and the dihedral design parameter investigations for dihedral depth and dihedral angle were conducted at the portion with the largest inflow distortion through a single-blade-passage computational model. The optimal combinational dihedral design parameter (dihedral depth 0.3, dihedral angle 6 deg) was applied to the blade passages with notable flow loss which were mainly located in the annulus positions from −120 to 60 degrees suffering from inlet distortion, while the blades in the low-loss annulus locations were unchanged. In this way, a non-uniform stator dihedral design scheme was achieved. In the end, the effectiveness of the non-uniform stator dihedral design was validated by analyzing the internal flow fields of the BLI fan. The results show that the stator dihedral design in distorted regions can increase the inlet axial velocity and reduce the aerodynamic load near the blade trailing edge, which are beneficial for suppressing the flow separations and reducing aerodynamic loss. Specifically, compared with the baseline design, the non-uniform stator dihedral design has achieved a reduction of aerodynamic loss of about 7.7%. The fan stage has presented an improvement of adiabatic efficiency of about 0.48% at the redesigned point without sacrificing the total pressure ratio. In the entire operating range, the redesigned fan has also shown a higher adiabatic efficiency than the baseline design with no reduction of the total pressure ratio, which provides a probable guideline for future BLI distortion-tolerant fan design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Airframe Design for Silent Aircraft;Hileman;Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit,2007

2. Turboelectric Distributed Propulsion Engine Cycle Analysis for Hybrid-Wing-Body Aircraft;Felder;Proceedings of the 47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2009

3. MDO of a Blended-Wing-Body Transport Aircraft with Distributed Propulsion;Ko;Proceedings of the AIAA’s 3rd Annual Aviation Technology, Integration, and Operations (ATIO) Tech,2003

4. Flow Simulation of N2B Hybrid Wing Body Configuration;Kim;Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition,2012

5. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft;Felder;Proceedings of the 20th International Society for Airbreathing Engines,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3