Author:
Yu Chao,Zhou Lizhi,Mahtab Nazia,Fan Shaojun,Song Yunwei
Abstract
Perceiving how animals adjust their feeding rate under a variety of environmental conditions and understanding the tradeoffs in their foraging strategies are necessary for conservation. The Holling functional response, which describes the relationship of feeding rate and food density to searching rate and handling time, has been applied to a range of waterbirds, especially with regard to Type II functional responses that describe an increasing feeding rate with food density but at a decelerating rate as the curve approaches the asymptote. However, feeding behavior components (feeding rate, searching rate, and handling time) are influenced by factors besides prey density, such as vigilance and flock size. In this study, we aim to elucidate how Bewick’s swans (Cygnus columbianus bewickii) adopt flexible foraging strategies and vary their feeding behavior components in response to disturbance, flock size, and food density. We collected focal sampling data on the foraging behavior of swans that foraged rice grains, foxnut seeds, and tubers in paddy field, foxnut pond, and lake habitats, respectively, in Shengjin and Huangpi lakes during winter from 2016 to 2018. The observed feeding rate was not correlated with food density and displayed a positive relationship with searching rate but negative relationships with handling time, flock size, overall vigilance time, and disturbance time. Handling time was negatively correlated with food density and flock size, yet it increased with disturbance, overall vigilance time, and normal vigilance time. Searching rate was negatively correlated with food density, flock size, and disturbance time. Feeding rate was affected by the combined effects of handling time and searching rate, as well as food density and searching rate. The shape of the observed functional response could not be fitted to Holling’s disc equation. However, the disc equation of the predicted feeding rate of wintering swans was found to be driven by food density. This provides insight into how wintering waterbirds adopt appropriate foraging strategies in response to complicated environmental factors, which has implications for wildlife conservation and habitat management.
Funder
National Natural Science Foundation of China
Subject
General Veterinary,Animal Science and Zoology