Effects of Multipath Attenuation in the Optical Communication-Based Internet of Underwater Things

Author:

Qadar RabiaORCID,Bin Qaim WaleedORCID,Nurmi JariORCID,Tan BoORCID

Abstract

The propagation of light underwater is tied closely to the optical properties of water. In particular, the underwater channel imposes attenuation on the optical signal in the form of scattering, absorption, and turbulence. These attenuation factors can lead to severe spatial and temporal dispersion, which restricts communication to a limited range and bandwidth. In this paper, we propose a statistical model to estimate the probability density function of the temporal dispersion in underwater wireless optical communication (UWOC) based Internet of Underwater Things (IoUTs) using discrete histograms. The underwater optical channel is modeled using Monte Carlo simulations, and the effects of temporal dispersion are presented by measuring the magnitude response of the channel in terms of received power. The temporal response analysis is followed by an extensive performance evaluation in terms of bit error rate (BER). To facilitate in-depth theoretical analysis, we have measured and presented magnitude response and BER of the channel under different field-of-views (FoVs), apertures, and water types. The three main areas under study are (i) BER versus link distance behavior, (ii) temporal response of the channel, and (iii) effect of scattering on photon travel. Our study shows the two main factors that contribute to beam spreading and temporal dispersion are (i) diffusivity of the optical source and (ii) multiple scattering. Furthermore, our results suggest that temporal dispersion caused due to multiple scattering cannot be mitigated completely; however, it can be minimized by optimizing the receiver aperture.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3