Abstract
In order to achieve climate goals and limit the global temperature rise, an increasing share of renewable-energy sources (RESs) is required. However, technologies for the use of RESs need to be integrated into the landscape and ecological heritage to ensure a fully sustainable energy transition. This work aims to develop a scalable technique for integrating the estimation of rooftop PV and wind potential into spatial planning, providing a framework to support decision-makers in developing energy policies. The methodology is applied to the minor Sicilian islands, which are characterised by significant environmental and landscape constraints. The methodology is used to identify the areas eligible for the installation of onshore wind turbines and the usable roof surfaces for the installation of PV systems. It is shown that the available technical potential of rooftop PV installations could ensure a higher production than the actual consumption on 13 of the 14 islands studied. Nevertheless, efforts must be made to improve the legal framework, which currently places major limits on the use of wind energy.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference66 articles.
1. The Paris Agreement,2015
2. Regulation (EU) 2020/852 of the European Parliament and of the Council of 18 June 2020 on the Establishment of a Framework to Facilitate Sustainable Investment, and Amending Regulation (EU) 2019/2088,2020
3. Renewed Sustainable Finance Strategy;Vorbach,2022
4. Islands of the European Union: State of Play and Future Challenges Policy Department for Structural and Cohesion Policies Directorate-General for Internal Policies EN STUDY;Haase,2021
5. Method multi-criteria decision-making method for site selection analysis and evaluation of urban integrated energy stations based on geographic information system
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献