Author:
Tu Rui,Yang Hui,Lin Heyun,Zhan Hanlin,Wu Di,Yu Minghu,Chen Liang,Chen Wenjie
Abstract
This paper mainly focuses on the investigation and analysis of a novel consequent-pole flux-intensifying memory machine (CP-FIMM). The proposed CP-FIMM exhibits the advantages of a satisfactory flux-regulation range, reduction of the required magnetizing current magnitude, as well as similar torque with much less PM utilization compared to its conventional counterpart. By designing the q-axis flux barriers, the flux-intensifying structure can be realized to enhance the demagnetization withstand capability of the CP-FIMM. The machine topology and operating principle are described. Moreover, the equivalent magnetic circuit model is developed to highlight the performance improvement of the proposed CP-FIMM. Finally, the electromagnetic performance of the proposed CP-FIMM is compared with that of a benchmark conventional FIMM by 2-D and 3-D finite element analysis.
Funder
National Natural Science Foundations of China
Fundamental Research Funds for the Central Universities
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction