Functional Logistic Regression for Motor Fault Classification Using Acoustic Data in Frequency Domain

Author:

Poręba JakubORCID,Baranowski JerzyORCID

Abstract

Motor diagnostics is an important subject for consideration. Electric motors of different types are present in a multitude of object, from consumer goods through everyday use devices to specialized equipment. Diagnostic assessment of motors using acoustic signals is an interesting field, as microphones are present everywhere and are relatively easy sensors to process. In this paper, we analyze acoustic signals for the purpose of motor diagnostics using functional data analysis. We represent the spectrum (FFT) of the acoustic signals on a B-Spline basis and construct a classifier based on that representation. The results are promising, especially for binary classifiers, while multiclass (softmax regression) shows more sensitivity to dataset size. In particular, we show that while we are able to obtain almost perfect classification for binary cases, multiclass classifiers can struggle depending on the training/testing split. This is especially visible for determining the number of broken teeth, which is a non-issue for binary classifiers.

Funder

National Science Center

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference16 articles.

1. Functional Data Analysis;Ramsay,2005

2. When the data are functions

3. Some Tools for Functional Data Analysis

4. Principal components analysis of sampled functions

5. Some Properties of Smoothed Principal Components Analysis;Pezzulli;Comput. Stat,1993

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3