2D Combustion Modeling of Cell Venting Gas in a Lithium-Ion Battery Pack

Author:

Zhang Yuanying,Wang Enhua,Li Cheng,Wang HewuORCID

Abstract

With the rapid development of lithium-ion battery technology, powertrain electrification has been widely applied in vehicles. However, if thermal runaway occurs in a lithium-ion battery pack, the venting gas in the cells will spread and burn rapidly, which poses a great threat to safety. In this study, a 2D CFD simulation of the combustion characteristics of cell venting gas in a lithium-ion battery pack is performed, and the possibility of detonation of the battery pack is explored. First, a numerical model for the premixed combustion of venting gas is established using a two-step combustion mechanism. The combustion characteristics are then simulated in a 2D channel for the stoichiometric combustible mixture, and the variations in the flame velocity and pressure increment in the flow channel are analyzed. Next, the effects of the initial conditions inside the battery pack, including the pressure, temperature, and excess air coefficient, on the flame propagation process and pressure variation are evaluated. The results indicate that the flame velocity increases with the increase in the initial pressure or temperature and that the influence of the initial temperature is more acute. The maximum flame speed is achieved with a slightly rich mixture, about 450 mm·s−1. When the excess air coefficient is around 0.9, the flame propagation changes from a slow deflagration to a fast deflagration, which causes a high risk of explosion for the battery pack.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3