Short-Term Load Forecasting Algorithm Based on LST-TCN in Power Distribution Network

Author:

Sheng Wanxing,Liu KeyanORCID,Jia Dongli,Chen ShuoORCID,Lin RonghengORCID

Abstract

In this paper, a neural network model called Long Short-Term Temporal Convolutional Network (LST-TCN) model is proposed for short-term load forecasting. This model refers to the 1-D fully convolution network, causal convolution, and void convolution structure. In the convolution layer, a residual connection layer is added. Additionally, the model makes use of two networks to extract features from long-term data and periodic short-term data, respectively, and fuses the two features to calculate the final predicted value. Long Short-Term Memory (LSTM) and Temporal Convolutional Network (TCN) are used as comparison algorithms to train and forecast 3 h, 6 h, 12 h, 24 h, and 48 h ahead of daily electricity load together with LST-TCN. Three different performance metrics, including pinball loss, root mean squared error (RMSE), and mean absolute error (RASE), were used to evaluate the performance of the proposed algorithms. The results of the test set proved that LST-TCN has better generalization effects and smaller prediction errors. The algorithm has a pinball loss of 1.2453 for 3 h ahead forecast and a pinball loss of 1.4885 for 48 h ahead forecast. Generally speaking, LST-TCN has better performance than LSTM, TCN, and other algorithms.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Frequency Hopping Prediction Model Based on TCN-GRU;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2024-09-01

2. Differences in Applications of Various Neural Network Algorithms for Thermal Error Compensation;Sensors and Materials;2024-08-29

3. Performance analysis of deep learning-based electric load forecasting model with particle swarm optimization;Heliyon;2024-08

4. Research on deep-learning-based photovoltaic output estimation and multi-layer collaborative load prediction in distribution networks;International Conference on Mechatronic Engineering and Artificial Intelligence (MEAI 2023);2024-02-28

5. Ultra-short-term Photovoltaic Power Prediction Based on STCN Model;2023 3rd International Conference on Electrical Engineering and Mechatronics Technology (ICEEMT);2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3