Machine Learning Methods for Automated Fault Detection and Diagnostics in Building Systems—A Review

Author:

Nelson William,Culp CharlesORCID

Abstract

Energy consumption in buildings is a significant cost to the building’s operation. As faults are introduced to the system, building energy consumption may increase and may cause a loss in occupant productivity due to poor thermal comfort. Research towards automated fault detection and diagnostics has accelerated in recent history. Rule-based methods have been developed for decades to great success, but recent advances in computing power have opened new doors for more complex processing techniques which could be used for more accurate results. Popular machine learning algorithms may often be applied in both unsupervised and supervised contexts, for both classification and regression outputs. Significant research has been performed in all permutations of these divisions using algorithms such as support vector machines, neural networks, Bayesian networks, and a variety of clustering techniques. An evaluation of the remaining obstacles towards widespread adoption of these algorithms, in both commercial and scientific domains, is made. Resolutions for these obstacles are proposed and discussed.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference114 articles.

1. Global Status Report towards a Zero-Emission, Efficient and Resilient Buildings and Construction Sector https://www.iea.org/reports/2018-global-status-report

2. HVAC Equipment, Unitary: Fault Detection and Diagnosis

3. A fault detection and diagnosis strategy of VAV air-conditioning systems for improved energy and control performances

4. Review Article: Methods for Fault Detection, Diagnostics, and Prognostics for Building Systems—A Review, Part I

5. The Energy Impact of Faults in U.S. Commercial Buildings;Roth;Proceedings of the 2004 International Refrigeration and Air Conditioning Conference,2004

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3