An Anomaly Detection Method of Time Series Data for Cyber-Physical Integrated Energy System Based on Time-Frequency Feature Prediction

Author:

Chen JinyiORCID,Zhou SuyangORCID,Qiu Yue,Xu Boya

Abstract

An integrated energy system (IES) is vulnerable to network attacks due to the coupling features of multi-energy systems, as well as the deep integration between a physical system and an information system. The anomaly detection of the time-series data in an IES is a key problem to defend against network attacks and ensure the cyber-physical security of IES. Aiming at false data injection attacks (FDIAs) on IES, this paper proposes an anomaly detection method for time-series data in a cyber-physical integrated energy system based on time-frequency feature prediction. The time-frequency features of the time-series data are extracted based on three time-frequency transform methods (DWT, EMD, and EWT). Then the extracted time-frequency features are input to the autoencoder (AE) to capture the hidden features and nonlinear structure of the original data in the frequency domain. The time-domain data within the detected time period are predicted by applying regression prediction on the top-layer features of AE. Considering the uncertainty of regression prediction, kernel density estimation (KDE) is used to estimate the probability density function of prediction error and the interval of the predicted data is estimated accordingly. The estimated lower boundary value of the predicted data is selected as the attack judgment threshold for anomaly detection. The results of the case study verify the advantages of the proposed method in reducing the false positive rate and improving the anomaly detection accuracy.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comprehensive analysis of change-point dynamics detection in time series data: A review;Expert Systems with Applications;2024-08

2. Detecting thermal anomalies in buildings using frequency and temporal domains analysis;Journal of Building Engineering;2023-09

3. "Summary of \"Source-Network-Load-Storage\" Scheduling of Integrated Energy System Based on Reliability";Proceedings of the 2023 6th International Conference on Information Management and Management Science;2023-08-25

4. Prediction of NOx Emission Concentration Based on Weighted Optimal Combination Model;2023 6th International Conference on Intelligent Robotics and Control Engineering (IRCE);2023-08-04

5. A Multi-Layered Representation for Intrusion Detection System in Cyber Systems Using CNN Deep Learning Algorithm;2023 International Conference on Data Science and Network Security (ICDSNS);2023-07-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3