The Composition and Origin of PM1-2 Microspheres in High-Calcium Fly Ash from Pulverized Lignite Combustion

Author:

Fomenko ElenaORCID,Anshits Natalia,Akimochkina GalinaORCID,Solovyov Leonid,Kukhteskiy Sergey,Anshits Alexander

Abstract

This article presents the results of a systematic study on the composition and origin of PM1-2 microspheres in high-calcium fly ash. The composition of individual microspheres was studied by scanning electron microscopy and energy-dispersive X-ray spectroscopy. It is shown that the compositions of the analyzed microspheres satisfy the general dependency with a high correlation coefficient: [SiO2 + Al2O3] = 88.80 − 1.02 [CaO + Fe2O3 + MgO], r = −0.97. The formation pathway is parallel to the general trend: anorthite, gehlenite, esseneite, tricalcium aluminate, ferrigehlenite, and brownmillerite. The microspheres were classified into four groups depending on the content of major components: Group 1 (CaO > 40, SiO2 + Al2O3 ≤ 35, Fe2O3 < 23, MgO < 16 wt %); Group 2 (30 < CaO < 40, SiO2 + Al2O3 ≤ 40, Fe2O3 < 27, MgO < 21 wt %); Group 3 (CaO ≤ 30, 40 ≤ SiO2 + Al2O3 ≤ 75, Fe2O3 < 10, MgO < 10 wt %); and Group 4 (14 < CaO < 40, SiO2 + Al2O3 < 14, Fe2O3 > 30, MgO ≤ 14 wt %). A comparative analysis of the relationship between major component concentrations suggests the routes of PM1-2 formation from feldspars and Ca–, Mg–, and Fe–humate complexes during lignite combustion.

Funder

Russian Science Foundation

Krasnoyarsk Regional Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference58 articles.

1. https://www.worldcoal.org/coal-facts/coal-electricity/

2. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels

3. Mineral Impurities in Coal Combustion: Behavior, Problems and Remedial Measures;Raask,1985

4. Coal combustion-generated aerosols: Formation and properties

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3