On Entropic Learning from Noisy Time Series in the Small Data Regime

Author:

Bassetti Davide1ORCID,Pospíšil Lukáš2ORCID,Horenko Illia1

Affiliation:

1. Faculty of Mathematics, RPTU Kaiserslautern-Landau, Gottlieb-Daimler-Str. 48, 67663 Kaiserslautern, Germany

2. Department of Mathematics, Faculty of Civil Engineering, VŠB-TUO, Ludvika Podeste 1875/17, 708 33 Ostrava, Czech Republic

Abstract

In this work, we present a novel methodology for performing the supervised classification of time-ordered noisy data; we call this methodology Entropic Sparse Probabilistic Approximation with Markov regularization (eSPA-Markov). It is an extension of entropic learning methodologies, allowing the simultaneous learning of segmentation patterns, entropy-optimal feature space discretizations, and Bayesian classification rules. We prove the conditions for the existence and uniqueness of the learning problem solution and propose a one-shot numerical learning algorithm that—in the leading order—scales linearly in dimension. We show how this technique can be used for the computationally scalable identification of persistent (metastable) regime affiliations and regime switches from high-dimensional non-stationary and noisy time series, i.e., when the size of the data statistics is small compared to their dimensionality and when the noise variance is larger than the variance in the signal. We demonstrate its performance on a set of toy learning problems, comparing eSPA-Markov to state-of-the-art techniques, including deep learning and random forests. We show how this technique can be used for the analysis of noisy time series from DNA and RNA Nanopore sequencing.

Funder

European Commission under Horizon Europe Programme

Publisher

MDPI AG

Reference67 articles.

1. Consistent autoregressive spectral estimates;Berk;Ann. Stat.,1974

2. Prediction of multivariate time series by autoregressive model fitting;Lewis;J. Multivar. Anal.,1985

3. Efficient estimation of parameters in moving-average models;Durbin;Biometrika,1959

4. Kedem, B., and Fokianos, K. (2005). Regression Models for Time Series Analysis, John Wiley & Sons.

5. An introduction to hidden Markov models;Rabiner;IEEE ASSP Mag.,1986

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3