Image-Acceleration Multimodal Danger Detection Model on Mobile Phone for Phone Addicts

Author:

Wang Han1ORCID,Ji Xiang1,Jin Lei1,Ji Yujiao1,Wang Guangcheng1ORCID

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

Abstract

With the popularity of smartphones, a large number of “phubbers” have emerged who are engrossed in their phones regardless of the situation. In response to the potential dangers that phubbers face while traveling, this paper proposes a multimodal danger perception network model and early warning system for phubbers, designed for mobile devices. This proposed model consists of surrounding environment feature extraction, user behavior feature extraction, and multimodal feature fusion and recognition modules. The environmental feature module utilizes MobileNet as the backbone network to extract environmental description features from the rear-view image of the mobile phone. The behavior feature module uses acceleration time series as observation data, maps the acceleration observation data to a two-dimensional image space through GADFs (Gramian Angular Difference Fields), and extracts behavior description features through MobileNet, while utilizing statistical feature vectors to enhance the representation capability of behavioral features. Finally, in the recognition module, the environmental and behavioral characteristics are fused to output the type of hazardous state. Experiments indicate that the accuracy of the proposed model surpasses existing methods, and it possesses the advantages of compact model size (28.36 Mb) and fast execution speed (0.08 s), making it more suitable for deployment on mobile devices. Moreover, the developed image-acceleration multimodal phubber hazard recognition network combines the behavior of mobile phone users with surrounding environmental information, effectively identifying potential hazards for phubbers.

Funder

National Natural Science Foundation of China

Nantong Natural Science Foundation

Jiangsu Province Graduate Practice Innovation Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3